If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-20x-32=0
a = 9; b = -20; c = -32;
Δ = b2-4ac
Δ = -202-4·9·(-32)
Δ = 1552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1552}=\sqrt{16*97}=\sqrt{16}*\sqrt{97}=4\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{97}}{2*9}=\frac{20-4\sqrt{97}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{97}}{2*9}=\frac{20+4\sqrt{97}}{18} $
| -4.6-0.718n=-11.78 | | 10-1/5(j-10)=2/5(20+j) | | 7-3a=14 | | 2/3+3/5x=31/15 | | -8a=-42 | | x+20/9=-2/3 | | 9=n/2 | | A=9/8(h-76) | | (3x+5)+(2x)=41 | | -3(2x+5)-(7-4x)=40 | | x-(12)=6-(8x) | | 3/x+4=2/x-4 | | 15=-4x+2 | | x=2/3x=8 | | 2y+(-3)=-15 | | 3+x/7=7 | | 78+2x=80+3x | | 0.6/10=39/x | | 71=6-8x-3x | | -3n+16=-2 | | 10=-26+4x | | 8n-(6n+5)=1 | | 3(-2r)=30(-r-2)+r/6 | | 8y+12=5y-1+y | | 2=x/4-1 | | 5(20x)+100=1400 | | -2(3x+8)=-16 | | 12y(2+1=0 | | 15=3/2x-10 | | 20x+100=1400 | | 4x+7x+2=90 | | 1/292y+40=-6 |